Sunday, 9 August 2020

LightWorm

 

Nerve fibres conduct impulses at a speed of around 100 ms-1, which - in this age of gigabit light fibres - is a bit sluggish.

But we can now genetically engineer neurons to emit light when they fire, and to fire when light strikes them.  In addition light fibres are simple structures, consisting of two transparent concentric cylinders with different refractive indices. That is a lot simpler than a nerve's dendrite or axon (the nerve fibres that conduct impulses between nerve cells). We know that living organisms can make transparent materials of differing refractive indices (think about your eyes), and they excel at making tubular and cylindrical structures. Indeed plants and animals consist of little else.

So I propose genetically engineering neurons (nerve cells) that communicate optically rather than chemically. The synapses where transmitted signals from axons are received by dendrites as inputs to other neurons are small enough to transmit light instead of the neurotransmitter molecules that perform this function in natural neurons.  And light is easy to modulate chemically, so inhibitory neurotransmitters would just need to be more opaque, and excitatory ones would need to enhance transparency.  And, of course, it would be straightforward to create both inputs to, and outputs from, such a system using conventional light fibres, which would allow easy interface to electronics.

Doing this in a human brain might present a few challenges initially, so it would be best to start with a slightly simpler organism. Caenorhabditis elegans (in the picture above) is a small worm that has been extensively studied. So extensively, in fact, that we know how all 302 of its neurons are connected (that's for the hermaphrodite C. elegans; the male has 383 neurons, and we know how they're connected too).  We also know a great deal about the genetics of how the animal's nerve structure constructs itself.

Let's build a C. elegans with a brain that works at the speed of light...

1 comment: